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The nodal method of electric circuit theory is fully exploited in our work to provide general building blocks that lead to the
non-linear system of equations that model 2D low-frequency electromagnetic problems coupled to electric circuits. The building
blocks of the electromagnetic region and circuit system (with arbitrary topology) are easily assembled together using the simple rules
of the nodal method. This methodology is restricted to current-forced electric configurations and to a special class of circuit elements.
Nevertheless, it is posible to overcome these limitations using the Modified Nodal Analysis method, providing a general methodology
that copes with the 2D electromagnetic coupled problem. It is shown that Galerkin or variational approaches are compatible with
the building-block approach through winding vectors. This way, a complete and practical computer implementation can be readily
written/coded that performs efficiently in terms of computational times and resources. Examples are solved using our computer
programs and their results compared with those of validated commercial software.

Index Terms—Modified Nodal Analysis, Finite Element Analysis, Low Frequency, Electromagnetic Devices.

I. INTRODUCTION

F INITE ELEMENT (FE) Analysis is a well established
technique for modelling low-frequency magnetic devices.

Its theory and applications can be found in textbooks [1]–[5],
providing an understanding of the physics and mathematics
involved. These books include demonstrative computer codes
to solve simple magnetostatic and electrostatic problems. Some
books even cover problems where low-frequency electromag-
netic devices are coupled to circuit systems [2]–[4]. The
so-called circuit-field problem is more general since it can
deal with problems where (massive or filamentary) conductor
currents are unknown and with the electric interaction with
external devices represented by equivalent circuits. However,
the translation of the theory presented in books [2]–[4] and
articles [6] to computer programs is not an easy task.

Electrical and electronic engineers are well familiarised with
the nodal method for solution of circuit networks. The nodal
approach is frequently translated to a set of rules that can be
easily coded into a computer program. The nodal method can
be more formally presented with the aid of building blocks [7],
which are no more than stamps of the more general Modified
Nodal Analysis (MNA) [8], [9]. Once the stamps have been
established for each circuit element, a consistent system of
equations is obtained by adding each building block to the
global matrix and forcing vector. Hence, the global system is
easily constructed and solved.

The FE method also leads to elemental matrices and vectors
that can be seen as stamps, since they are added to a global
system in the same way as the stamps of the MNA. Although
the theory behind each stamp is very important, its main
task, once known, is to ease writing of computer programs.
Indeed, computers do not know about Kirchhoff’s current law
or variational methods, they only add element contributions
to specific locations. Our work aims to provide the required

stamps and steps to easily write a computer program from
scratch once the theory has been understood.

II. THE LOW-FREQUENCY ELECTROMAGNETIC PROBLEM

The sort of problems that will be considered in this work
obey the following nonlinear equation:
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This equation is valid for 2D Cartesian problems and the
definition of each variable, as well as, applicable boundary
conditions can be found elsewhere [1]–[5]. Eq. (1) can be
coupled to circuit systems through the voltage equation of each
conductor. This leads to:
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where im and if are the total currents in the massive and fila-
mentary conductors while ∆m and ∆f represent the conductor
cross sections. A filamentary region can contain nf turns. We
will consider in this work time-harmonic operation ( ∂

∂t = jω)
and first-order finite elements for the sake of simplicity, but
transient problems and higher order element can be readily
accommodated.

III. CIRCUIT SYSTEM

A circuit network of arbitrary topology can be considered
with an arbitrary number of circuit elements such as resis-
tances, inductances, capacitances, transformers, voltage and
current sources (controlled or independent), and mutually cou-
pled inductances. In addition, FE conductors can be connected
to any pair of nodes, allowing circuit interaction between the
FE model and the circuit system. The global system of equation
is built using the MNA [8], [9].



IV. FE AND CIRCUIT STAMPS

Stamps for Eq. (2) can be found by applying a variational
or weighting residual approach [1]–[5]. The stamps of circuit
elements are established through the MNA [8].

A. FE arrays

The stamps for an arbitrary first-order FE element, with
vertex i, j and k, are:
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where Sii = b2i + c2i , Sij = bjbi + cjci, bi = yj − yk and ci =
xk−xj . xj and xk are the coordinates of the element vertexes.
Other elements are found by permutation of subindices. ∆e

defines the element area. Each stamp corresponds respectively
to each term of (2).

B. Circuit Stamps

The stamps of the most common circuit elements are:[
ya −ya
−ya ya

]
and

[
−is
is

]
for an addmitance ya and a current source is, respectively.
The admittance stamp has a conductance and an inductive or
capacitive susceptance, meaning that resistances, inductances
and capacitances are readily accommodated. A voltage source
es with internal impedance zs contributes with two stamps: 0 0 1

0 0 −1
1 −1 zs

 and

 0
0
−es


V. CIRCUIT-FIELD COUPLED PROBLEM

The nine stamps just shown allow the solution of a wide
class of low-frequency electromagnetic problems. Conventional
assembly of FE and circuit stamps is obtained through se-
quential numbering of nodal vertices and circuit nodes. The
coupling is achieved using the terminals of massive and
filamentary conductors as circuit nodes and treating them as
nonnatural elements of the MNA. This leads to a symmetric
equation that is easily constructed:
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where [K] and [N ] are FE matrices while [fi] is a FE forcing
vector. [Y ] [Z] and [A] are MNA matrices. [fv] and [i] are MNA
forcing vectors. [L] are coupling vectors of FE conductors.
[a], [v], [iMNA] and [iFE ] are vectors of unknowns. Hence, a
functional FE program code can be developed from scratch,
which can solve a broad class of problems.

VI. EXAMPLE

Several examples will be shown in the full version of
our manuscript. Here we show the simulations results of an
induction motor that is fed from a voltage source through
series connected impedances. Rotor end rings are represented
with an intricate arrangement of circuit elements that couple
to the rotor bars. Fig. 1 shows the results (labeled FLD) of
the developed computer program using stamps. It also shows
the results obtained with commercial software (Flux2D [10]),
demonstrating that our approach is not only easy to implement
but it is also accurate.

Fig. 1. Torque-speed characteristic of an induction machine

VII. CONCLUSIONS

The concept of stamps is exploited to rapidly and easily
write computer programs from scratch to deal with the 2D
low-frequency electromagnetic problem. Nine simple stamps
have been explicitly provided to solve a wide range of practical
problems. This approach can be readily extended to high-order
FE elements using exactly the same methodology. Moreover,
electrical engineers should find this methodology appealing, as
the nodal and MNA circuit analysis methods are part of their
common tools.
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